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INTRODUCTION AND RELATED WORKS

>  MOTIVATION
mmWave systems enable convergence of radar and communication wavelengths

Previously separated communication and sensing systems can coexist on a single hardware
Sensing can significantly improve communication performance

>  USE CASES
Object detection to assist beam steering
Geolocalization in GPS-denied environments
Autonomous driving, traffic monitoring, robotics and drone control

>  Present work: investigate joint communication and sensing strategies in classical-quantum systems
What happens in a very lower power regime?

>  RELATED WORKS
lID channel parameter and rate/distortion regime [Zhang et al.’11, Kobayashi et al.’18’19, Ahmadipour et al.’21]

Static channel parameter and rate/sensing-error exponent regime [Chang et al. 22, Joudeh-Willems’22, Wu-Joudeh’22]

Continuous channel parameter and rate/Cramer-Rao bound regime [Xiong et al.’22]
Quantum state discrimination [Nussbaum-Szkota’09’11, Li’16, Wilde et al.’20, Salek et al.’22]
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>  JOINT COMMUNICATION AND SENSING MODEL
Parameter-dependent Classical-guantum channel (Compound channel)
Channel parameter 0 € ©, |©| < oo with prior probabilities {ps }eco

Classical encoding function f : [1, M] — X", Bob’s decoding POVM {Aw }we1,m,

Alice’s collection of detection POVMs {{n(ng}Qe@}weﬂl,M]]

>  PERFORMANCE METRIC
Detection-error and communication-error probabillity
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Rate and detection-error exponent - log M and Ecg ) & — log P.
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THEOREM:
The region of rate/detection-error exponent is
2 .
(R, E) e R% :
U R < mingeo [ (PX N)(le)
Px €P x E < (PX)
where

»  Trade-off between rate and detection-error exponent is governed by (classical) type of codewords



JOINT QUANTUM COMMUNICATION AND SENSING:

>  Trade-off region
Optimal error-exponent and optimal communication rate are achieved by different Px

>  Numerical example
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JOINT QUANTUM COMMUNICATION AND SENSING: [LLUSTRATION 6

> No trade-off scenario
»  Optimal error-exponent and communication rate can be achieved by the same Px
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ACHIEVABILITY:

DEFINITION:

(R, E) is achievable if for every ¢ > 0 , there exists n large enough and a code C of length n,
consisting of (n, M, f, {{I‘I(QW)}%@}WE[LM]], {Aw }wepi M), such that

, 1
P < e, E” >E—¢ and “logM >R —c.

»  SKETCH OF PROOF [Chang et al.’22]
Fix type of codeword to Px.

By [Hayashi’09], there exists a sequence of constant-composition code with code rate R < min I[(PX, N )(fl) B)
such that P!" < ¢ for any positive € and large enough n . 0eo

By specializing [Li’16, Theorem 2], detection-error exponent of this code only depends on its type, Ii.e.,
Ecsn) > ¢(Px) — € for any positive € and large enough n .

Take union of all possible type Px.



ACHIEVABILITY:

THEOREM:
Let 01, -, 0, € P(H).Foralll <i<r,let g, = Z,(T":l i Qi be the spectral
decomposition of i, and T = max{Ty,---, T,}. There exists a function f(r, T)

and POVM {I1;} ¢, such that
Ztl‘ (O','(l — H,)) < f(l’, T) Z Z min{)\,-k, )\jg}tl" (Q,‘ij/),
=1

(ij):i<j k2

where f(r, T) < 10(r — 1)*T?.

>  GOAL: show that detection-error exponent only depends on type of codewords
> Specify result to o9 £ ps Q]_, p?, where x = f(w), we have

S tr (popil (1= 15)) < F(I1O, T) Xy v g max(pa., por)tr (057050 ) )
>  Note that tr ((p’j\’f)s(pi\’f/)l_s) =i tr (( 03 (et )1 ) by trace of tensor product state, we have
ogtr ((p5)* (05 )*=%) = &2, Px(u) log tr ((p")*(o” )

> With some manipulations, we can show that

1

—— log P~ I_I(W) > min min sup — Px(u)lo tr( u,0"y1 )—e
—log Pe (10 SPRUINSTY ] 9,#956[0P1] > Px(u)log (R )

= ¢(Px) — ¢

u



CONVERSE:

> KEY CHALLENGE
Codebook is not of constant-composition, need to partition codebook into sub-codebooks according to their type.

Some of codeword types are more significant (i.e., have exponentially many codewords), and find upper bound on
sizes of these significant sub-codebooks related to codeword type.

Derive upper-bound on the detection-error exponent based on codeword types.

Choose appropriate type representative of codebook and relate rate to detection-error exponent
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CONVERSE:

»  SKETCH OF PROOF [Chang et al.’22]
Rate analysis: any sub-codebooks of type Pxwith exponentially many codewords must be upper-bounded by

log M
ogn > < m@in I(Px, N>(<Ql>3)

Detection-error exponent analysis: for any codeword X with type Px, detection-error exponent is upper-bounded by

— log P2 ({0 }oco {Mo}uco) < 6(Px) +

If (R, E)is achievable, given a codebook, for any type with exponentially many codewords

log M log M
OgnPX> Ogn 0>2R—-—€e—90 gnd E —€e< ¢(Px)—|—5

we can choose Px = argmin ¢(Px) , where T is set of type containing exponentially many codewords, such that

PxeT p
6
R < meln ( N)ELB) T+e+o0 :
< o(Px) +et0 P, |
Take union over all possible type - p
3




CONVERSE:

» Reduction to a binary quantum hypothesis testing [Nussbhaum-Szkota’11]

Fix a transm|33|on codeword x. Consider any POVM {I1s }sco for M-ary hypotheS|s testing, We construct a binary
POVM for (pAn pAn )palr as follows: chooseA, B0 A+B=1—-Ty—MNg,Ng 2 Mg+ ATy =My + B .

By monotonicity of POVM, we have the lower bound on detection-error probability
Z potr (pAn (I — _Ig)) > min{ pg, po } (tr (pA,, (I — ﬂg)) + tr (pA,, ﬂg))
HcO
» Reduction to a binary classical hypothesis testlng [Nusshaum-Szkota’09]

Optimal binary POVM to dlscrlmlnate(PAn PAn )is Holevo-Helstrom test {P IOA” > 0}, which is a Projection-
Valued Measure (PVM).

WLOG, we analyze performance of any PVM and develop lower-bound accordingly.

Consider spectral decompositions:
(IHal,+ | Hal) (IHalw | Hal)

ol = Y e (afland oy =Y B (B
i=(1,---,1) i=(1,---,1)

Lower-bound obtained by binary classical hypothesis testing:

tr (1= T)!) + (rep;:f’) > (Ppg(Pga,j) < Py (i.9)) + Pry, (P3(0.0) > PGi0) )

.and Py (i, j) H)\X"

where Py (i, J) H Vi Wﬁk Wj;ik



CONVERSE:

>  We derive the following lower-bound depending on type of codeword.

LEMMA:
Fix (P57, % ). Then for any PVYM{To,1 — Ty} and £ > 0, we have, for nlarge enough

tr ((I — r@)p;’?) + tr (ng ) (— — §> exp (n sup Z Px (u)(1 — s)Ds ( ‘

s€[0,1]

)

where Px corresponds to type of x.

» Combining the above steps, we obtain

— log P2 ({0 }oco. {Mo}uco) < 6(Px) +9



CONCLUSION AND REFERENCGES

>  CONCLUSION
Studied the problem of joint communication and sensing over a c-g channel with unknown channel parameter.

Characterized an explicit rate/detection-error exponent region for non-adaptive strategy, similar to [Chang et al.’22].
Tradeoff is governed by the empirical distribution of the codeword.
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